

Dr Ansgar C Cheng

BDS, MS, FRCDC, FRACDS, FAM(S), FCDSS, MRACDS, Cert. Pros., Cert. MaxFac. Pros. Adj Associate Professor, National University of Singapore Chair, Prosthodontics, College of Dental Surgeons, Singapore

- Radiation effects & impact on osseointegration
- Modes of radiation & chemoradiation
- Clinical studies & patient selection
- Animal studies
- Human data
- Osteoradionecrosis
- HBO
- Timing of implant placement
- Irradiation of existing implants

Radiation effects

- Reduced vasculature
- Loss of osteoprogenitor cells
- Fatty & fibrous degeneration
- Periosteum- accellular
- Loss of vasculature

Why are these changes important?

- Implant anchorage (mechanical vs biologic)
- Response to infection (compromised)
- Remodeling apparatus (not fully functional)
- Response to occlusal forces (compromised)
- Osteolytic

CHANGING METHODS OF RADIATION DELIVERY

Conventional radiation therapy (CRT)

- 200 cGy per fraction
- Total doses
 - 7000 cGy definitive dose
 - 5000-6000 cGy post op

Intensity modulated radiation therapy (IMRT)

multiple radiation beams (non-uniform intensities)

highly conformal doses to targets

limiting dose normal tissue structures.

RADIATION DELIVERY FACTORS

Conventional radiation therapy

IMRT

3 fields

5 fields

7 fields

Chemoradiation

Combine with CRT or IMRT

• Concommitant chemoradiation is theoretically equivalent to an additional 1000 cGy (Kashibhatla, 2006).

Consequences (particlularly with CRT): More short & long term side effects (mucositis, trismus, osteoradionecrosis

IMRT DOSIMETRY DIAGRAMS

Note the hot spot on anterior mandible (oval)

IRRADIATION OF EXISTING IMPLANTS- BACKSCATTER

Implants were placed simultaneous with tumor resection & reconstruction of this large mandibular defect with a fibula free flap. (6000 cGy post-op)

Cumulative radiation effect (Fowler & Stern, 1963; Ellis, 1968)

These indices represent an attempt to account for variables of radiation delivery to indicate more accurately the true biologic response.

Issues to consider

- Potential benefit to the patient
 - What are the objectives & wishes of the patient
 - Risk reward ratio
- Risk of osteoradionecrosis
 - Morbidity
- Short term success rates
- Long term success rates

Biologic viability (animal studies)

- Hum and Larsen, (1990
- Weinlander et al, (2006)
- Nishimura et al, (1994)
- Asikainen et al, (1998)
- Ohrnell et al, (1997)
- Jacobsson et al, (1988)

Biologic viability (animal studies) Asikainen, 1998

- Dogs received either 4000, 5000, or 6000 cGy
- 2/12 later TPS screw type implants were inserted
- 4/12 later the implants were loaded
- Success rates:
 - 4000 cGy group 100%
 - 5000 cGy group 20%
 - 6000 cGy group 0 %

Weinlander et al, (2006)

- Dogs (partially edentulated mandible)
- Following a healing period 3 implants were placed
- All 7 dogs: radiation tx at 3/52 post implantation,
- Dose equivalent to 5000 cGy delivered in 4 fractions during 2/52

METHODS – HISTOMORPHOMETRIC CALCULATIONS

• SEM of bone, soft tissue & implant

Histometry calculation yielded volume & boundary fractions for the implant, bone & soft tissue components

Weinlander et al, 2006

RESULTS

Nishimura et al, 1995

5200 cGy

3/12 after implant placement the tissue samples were harvested & were evaluated with light & fluorescent microscopy (Fluorochrome labeling).

A steady decrease in biologic activity at the higher doses.

RESULTS

Normal bone

Irradiated bone Nishimura et al, 1995

lower doses irradiated specimens: (more woven bone) than normal specimens

ADDITIONAL ANIMAL STUDIES

- Jacobsson et al (1988) Reduction in bone formation capacity, increase in bone resorption & reduction in the number of capillaries
- Ohrnell et al (1997) Bone marrow fibrosis, bone resorption, less bone adjacent to the implants, reduction in bone remodeling capacity
- Hum & Larsen (1990) Appositional bone index irradiated specimens < nonirradiated specimens

- At higher doses virtually no bone is deposited on the surface. (Anchorage is mechanical)
- At lower doses a greater component of woven bone is seen in the interface
- Death of osteocytes, loss of osteoprogenitor cells & osteoclasts compromises the remodeling of bone at the bone implant interface (alter response to load)

- Poor blood supply in the marrow predisposes to infection, implant loss
- Mandible: doses above 6500 cGy may lead to osteoradionecrosis.
- At lower doses, radiation induced tissue effects significantly reduced the bone appositional index (compromise load bearing)

Disclaimer

•No animal model truly reflects human biology. Lower form vertebrates (more tissue & vascular tolerant of radiation damage than humans)

 Using the mathematical biologic equivalent of human doses in a single administration or using fewer fractions with large doses, serves a mathematical purpose only (does not guarantee biologically equivalent outcomes)

•Animal studies have yet to be reported assessing the impact of chemoradiation on osseointegration.

Based on these data, reasonable to assume that:

1. Load carrying capabilities of osseointegrated implants in irradiated bone < nonirradiated bone.

2. Success rates of osseointegrated implants in irradiated bone < nonirradiated bone.

Higher dose = lower success rates.

3. Mandible at higher doses (>6500 cGy with conventional fractionation) osteoradionecrosis risks become significant.

4. Because of compromise of the remodeling apparatus of bone, late failures should be expected

HUMAN STUDIES

- Yerit et al, 2006
- Roumanas et al, 1997 (Maxilla)
- Roumanas et al, 2002 (Craniofacial sites)
- Nimi et al, 1998 (Maxilla)
- Esser et al, 1997 (Mandible, maxilla)
- Granstrom et al, 1994 (Craniofacial sites)
- Granstrom, 2005 (All sites)

Yerit et al, 2006 (Data 1990-2003)*

- Patients 71
- Dose 5000 cGY (Fields?)
- Number of implants 316
- Implant survival
 - Nonirradiated 95%
 - Irradiated sites 72%

*HBO was not used

Yerit et al, 2006 (Data 1990-2003)*

Success rates – Irradiated (154 implants)

- 93% at 1 year
- 90% at 2 years
- 84% at 5 years
- 72% at 8 years followup. The survival rates for the 84 implants placed

Success rates - nonirradiated residual mandiblular (84 implants)

- 99% at one year
- 99% at 2 years
- 99% at 5 years
- 95% at 8 years followup

Esser and Wagner, 1997

Post op dose (CRT) – up to 6000 cGy Opposed mandibular fields – **Symphysis?** Pts - 58 (from 1985-1995) Implants placed – 221 Implants lost – 32 Before loading - 18 After loading -17 Success rate 84.2%

Granstrom, 2005

63% survival rate for 15 implants placed in the mandible

*HBO was not used

Predictability-Maxilla — Roumanas et al, 1997* — Nimi et al, 1998*

0

55

63

Osteoradionecrosis

Patient received 6600 cGy (SCC) of the lateral tongue. Implants were placed 3 years post Tx.

36 months after implant placement the patient developed an infection with the left implant.

Eventually, the patient developed an osteoradionecrosis, a pathologic fracture of the mandible & subsequently the mandible was resected.

Predictability – Mandible Role of hyperbaric oxygen

- Data unclear
- Appears to help (Granstrom et al 1993, 2005)

 Success rates appear to be higher & the risk of osteoradionecrosis risk may be reduced (depends on dose to the implant sites)

- 63% survival rate for 15 implants placed in the
- 100% survival rate for 30 implants placed in the

mandible mandible with pre-op HBO

Granstrom 2005 -- All sites – 25 years

	Implants placed	Implants lost	ORN
Without HBO	291	117	5
With HBO	340	29	0

Does HBO following high doses of RT lead to biologic anchorage Vs mechanical anchorage?

IMPACT OF HBO

- Periosteal blood supply vs revascularizing the marrow & repopulating it with stem cells
- Success rates improved over the short term particularly in ideal sites (anterior mandible)

Impact of time – After cancerocial doses of radiation do the tissues recover ?

- At cancericidal doses the irradiated tissues do not recover. With time the irradiated tissues continue to deteriorate & become less vascular, more fibrotic etc.
- The longer the time from radiotherapy the poorer the results (Granstrom, 2005)

Recomendations

Patient selection

- Edentulous patients
- Risk reward
- Tumor status 80% of recurrences occur (1st year)
- Check the dosimetry
- Longer implants
- More implants than the usual
- Favorable engineering
- (Splinting, Rigid frameworks, Limit cantilever)
- HBO

- Dosage < 5500 cGy
 - Implants can be inserted with little or no risk of osteoradionecrosis
 - Success rates will be probably be lower than normal
- Dosage ~ 5500-6500 cGy
 - Decision makers (patient factors) e.g. : fractionation, tissue responses, clinical findings, dental history etc..
 Success rates not well documented
- Dossge > 6500 cGy
 - The risk of osteoradionecrosis becomes significant & implants should not placed unless HBO is given.
 - In such patients the success rates have been in the 70-80% range (possible osteoradionecrosis)

Clinically significant ("newer implants") in the irradiated patient?

Probably not.

*The major problem in the irradiated patient is loss of vasculature & with it the loss of osteoprogenitor cells (stem cells) in the marrow.

REFERENCES

- Granstrom G, Bergstom K, Tjellstrom A, Branemark P-I. A detailed analysis of titanium implants lost in irradiated tissues. Int J Oral Maxillofac Implants. 1994. 9: 653 – 662
- Marx R, Ehler W, Tayapongsak P. Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg. 1994. 160: 519-524
- Store G, Granstrom G. Osteoradionecrosis of the mandible. A microradiographic study of cortical bone. Scand J PlastReconstr Hand Surg. 1999. 33: 307 314
- Larsen PE. Placement of dental implants in the irradiated mandible. A protocol involving hyperbaric oxygen. J Oral Maxillofac Surg. 1997. 55: 967 971
- Kashibhatla. Hw much radiation is chemotherapy worth in advanced head and neck cancer? Int J RadiatOncolBiol Phys 2007. 68:1491–1495
- Wang RR, Pillai K, Jones PK. In vitro backscattering from implant material during radiotherapy. 1996. J Prosthet Dent. 75: 626 632
- Granstrom G, Tjellstrom A, Albrektsson T. Post-implantation irradiation for head and neck cancer treatment. 1993. Int J Oral Maxillofac Implants. 8: 495 501

- Roumanas ED, Nishimura RD, Davis KB. Clinical evaluation of implants retaining edentulous maxillary obturator prostheses. J Prosthet Dent. 1997. 77: 184 -90
- Roumanas E, Chang TL, Beumer J. Use of osseointegrated implants in the restoration of head and neck defects. Journal of the California Dental Association. September 2006
- Nimi A, Ueda M, Kaneda T, Maxillary obturator supported by osseointegrated implants placed in irradiated tissues: a preliminary report. Int J Oral Maxillofac Implants. 1998. 13: 407-11
- Beumer J, Curtis TA, Nishimura RD.Radiation therapy of head and neck tumors In Beumer J, Curtis TA, Marunick MT, (Eds.), Maxillofacial Rehabilitation: Prosthodontic and Surgical Considerations. Tokyo, IshiyakuEuroAmerica, p. 43-111
- Jacobsson M, Nannmark U, Sennerby L. Acute microvascular reactions to ionizing radiation in bone-anchored titanium implants: a vital microscopic study. Int J Oral Maxillofac Implants. 1987. 2: 193-196
- Jacobsson M, Tjellstrom A, Albrekktson T, Thomsen P. Integration of titanium implants in irradiated bone. Histologic and clinical study. Ann Otol Rhinol Laryngol. 1988. 97: 337-340
- Hum S, Larsen P. The effect of radiation at the titanium/bone interface: Tissue integration in oral, orthopedic and maxillofacial reconstruction. Laney W, Tolman, eds. Chicago, 1990. Quintessence Publishing Co. p. 234

- Weinlander, M. Beumer, J., Kenney, B. Lekovic, V., Holmes, R., Moy, P., Plenk, H.: Histomorphometric and fluorescence microscopic evaluation of interfacial bone healing around 3 different dental implants before and after radiation therapy. Int. J. Oral and Maxillofac Implants. 2006. 21:212-224.
- Asikainen P, Klemetti E. Osseointegration of dental implants in bone irradiated with 40, 50 or 60 Gy doses. An experimental study with beagle dogs. Clin Oral Implants Res. 1998. 1: 75-9
- Granstrom G, Tjellstrom A, Branemark P-I, Fornander J. Bone-anchored reconstruction of the irradiated head and neck cancer patient. Otolaryngol Head Neck Surg. 1993. 108: 334 – 343
- Granstrom G. Radiotherapy, osseointegration and hyperbaric oxygen therapy. Periodontology 2000. 2003. 33: 145 -162
- Granstrom G. Osseointegration in irradiated cancer patients: An analysis with respect of implant failures. J Oral Maxillofac Surg. 2005. 63:579-585
- Nishimura R. Implants in irradiated bone. In: Proceedings of the First International Congress on Maxillofacial Prosthetics. Zlotolow I, Esposito S, Beumer J, eds. 1995
- Ohrnell L-O, Branemark P-I, Nyman J. Effects of radiation on the biomechanics of osseointegration. An experimental in vivo study in rats. 1997. Scand J Plast Reconstr Hand Surg. 31: 281 - 293